This article talks about the barriers to simulation driven design faced everyday by engineers throughout the product development process – and how your organization can overcome them. We speak to product development companies and teams every day. Most strive to achieve:

  • Deeper understanding of product performance
  • Faster ramp-up, shorter development cycles and quicker time to market
  • Reduced design-cycle times
  • Fewer prototypes and first-time quality at reasonable cost
  • Reduced warranty liability and exposure

Odds are you’re already familiar with the traditional product development process. Taking ideas from concept, to design, simulation, prototyping all the way to manufacturing your products. For many years, industry has tried to consistently use simulation as a part of that process; for good reason. It typically improves quality, on-time delivery, and customer satisfaction.

Unfortunately, when simulation is used as a part of the product development process, it’s almost always used as the final validation step after a design is practically complete. But the fact is… that’s not exactly the vision of “simulation driven design” that the industry has been striving to achieve for years.  

So why is that? Let’s talk about the common barriers holding many companies back from achieving simulation driven design.

Common barriers of Simulation driven design

1.     Engineers feel they need to consult a simulation expert

Often, engineers feel like they don’t have the expertise to run simulations while they design – they feel like they need to consult an expert that may not be directly accessible. This creates design challenges early in your product development process.

2.     Engineers feel they need a simplified copy of the actual design model

Often, a simulation expert’s initial task is to figure out how to simplify a copy of the design model so that the simulation will run in a reasonable time and still provide an accurate actionable result. Many engineers don’t feel comfortable making the call regarding what part of their design is critical for a successful simulation.

3.     The iterative design process can be complicated

We can all agree that the design process is an iterative one. We can also agree that designing products is complicated. If it wasn’t, everyone would do it.

Certainly, a design engineer would want to use simulation as he/she iterates a design, but this would require running a simulation that could take hours – on multiple uniquely simplified copies over and over again. It’s just not efficient. It’s too disruptive to the design process. Because of this, design engineers generally don’t do it.

The solution: Simulate Earlier in the Design Process

What product development teams really need is a simulation tool that is fast, responsive, and so simple to use that it can literally keep up with design engineers during every step of the way.

No copies. No waiting. Just immediate simulation results throughout the design process.

By using simulation capabilities that are ‘pervasive’ across a concept and detailed throughout design stages – your organization will break down the barriers between design and simulation. Requirements and Quality.

That is the key.

The best part? There are solutions that give every design engineer what they need to truly achieve simulation driven design.

They provide design engineers with the ability to instantly understand how product design changes can impact a products performance. These solutions are called ANSYS Discovery Live and Creo Simulation Live.

The solution that makes simulation driven design easy

PTC and ANSYS partnered together to achieve an overarching goal to remove simulation barriers for product development teams. They accomplished this by deeply integrating ANSYS’s breakthrough of Discovery technology directly into Creo.

This partnership provides the best and broadest portfolio of engineering simulation software – putting the best in class design and simulation capabilities into a single product available to the fingertips of every design engineer – it’s called Creo Simulation Live.

How Creo Simulation Live Works

Creo Simulation Live uses a unique technology approach to deliver simulation results interactively as a product is being designed.

This solution compliments existing simulation offerings that tend to focus more on the analyses that require higher levels of fidelity or are used as a final validation step.

Creo Simulation Live works differently because it does not require the user or designer to be an expert in the field of analysis. They simply need to know basic constraint techniques and away they go.

Using this simulation technology analysis setup and simulation is fast and easy.

In fact, engineers are able to quickly learn the tool navigating a familiar command ribbon UI, context sensitive menus, RMB command access, simplified workflows and engineering terminology. Because, again, Creo Simulation Live puts real-time simulation right in your Creo design environment.

Creo Simulation Live even uses intuitive menus to define and place loads, and constraints. It allows simulations to be created and visualized in minutes and updated on-the-fly. It gives design engineers instantaneous feedback on design decisions.

How much can Simulation Driven Design Save You?

Solving design challenges with instantaneous simulation sounds great, but let’s talk about the return on investment (ROI) it could provide your organization.

Engineers across a diverse range of applications can take advantage of the many features that Creo Simulation Live offers to reduce both time and expense in the design process. These include:

  • Optimizing the product design and identifying issues early in the design process
  • Reducing the need for multiple heavy analysis iterations or prototypes
  • Mitigating the risk of product failure, warranty and liability claims

Investing in Creo Simulation Live gives your engineers a tool that enables them to realize their full design potential. 

Just like any business investment, engineers must be able to prove that the results obtained by using Creo Simulation Live are greater than the resources invested, and it’s worth the investment. On a basic level the return on investment (ROI) is the calculation of an investment’s cost versus its benefit.

To calculate an approximate ROI on Creo Simulation you don’t need to be an accountant, I will keep it simple! Try using the following formula: ROI = ((Gain of Investment)- (Cost of Investment)) / (Cost of Investment)

The Gain of Investment is the amount of money your organization will gain from using Creo Simulation Live.

Remember, money your organization does not have to spend, such as prototype costs, should also be included in your Gain of Investment number. E.g. the value of reducing the number of physical prototypes, the expense saved by reducing the number of hours spent on non-final design simulations, etc.

Your organization might also include the improved quality resulting in reduced cost of product warranty and repairs. In addition, you may also consider the value of the time saved in the product development process when using Creo Simulation Live. 

Creo Simulation Live can significantly reduce the number of design and prototype cycles, allowing more robust products to be marketed earlier. The Cost of Investment is the amount of money your organization will spend on Creo Simulation Live. The most obvious cost is the price of the Creo Simulation Live software.  To obtain specific costs for your organization feel free to reach out to us.

Your organization may also want to include the cost of training or implementation for the software. We can help you figure out the bottom-line investment in things like software and training. When calculating ROI make sure to document two things that will have an impact on your calculations, the timeframe, and the precision of your numbers.

Pick a timeframe for your calculation that is relevant to your organization (in the case that you are unsure as to what this might mean for your organization, we would be happy to assist). One year is a good timeframe to start, allowing the results to be annualized.

Your ROI calculation should be an estimate, and not down to the last dollar. Many of your numbers will be approximations.  Document your assumptions as you compile the numbers. That way you can voice your justification if asked later on.

Let’s look at an example taken from the Aberdeen Group – Industry Averages for Simulation Driven Design (2008, 2016).

Current Customer Numbers:

  • Annual Product Revenue: $100M
  • Percentage of Product Revenue from New Products: 25% ($25M)
  • Cost of Poor Quality (% of revenue): 8% ($8M)
  • Annual Cost of Prototypes (% of new product revenue): 2% ($500,000)
  • Number of Design Engineers: 100

Sample Creo Simulation Live Benefits:

  • Cost of Poor Quality: 10% savings – ($800,000)
  • Annual Cost of Prototypes: Decreased by 39% – ($195,000)

Creo Simulation Live Cost:

  • 100 Engineers x (~$2,400/engineer) = $240,000

ROI Calculation:

  • ROI = (($800,000+$195,000) – $240,000) / $240,000
  • ROI= 3.1

This demonstrates approximately a 300% return on investment!

Given this kind of return on investment, you now have a solid argument as to why purchasing Creo Simulation Live is the best option to overcome your design challenges! 

The latest ANSYS 19.2 release enables users to solve product development challenges faster than ever with Pervasive Engineering Simulation solutions. 
Shane Emswiler, Vice President and General Manager for ANSYS electronics, fluids, and mechanical business units says, “ANSYS 19.2 delivers product enhancements that enable more companies to remove design barriers and bring their innovative products to market faster than ever without sacrificing quality.”

Computational Fluid Dynamics (CFD) Improvements

The workflow for CFD Simulations is accelerated for watertight geometries supported by Mosaic meshing technology. ANSYS Fluent meshing delivers higher quality results at faster speeds using high-quality polyhedral meshes for accurate flow resolution. Users are now able to produce fewer and better quality cells to deliver solutions twice as fast as before.

ANSYS Fluent meshing delivers higher quality results at faster speeds

Multiphysics Improvements

System Coupling 2.0 for multiphysics design simulation has been added with the new release offering consistent performance and validation against the original version of the engine. High-performance computing (HPC) resources for multiphysics simulations are able to quickly map data. Text-driven workflows have been improved to make it easier to start and restart coupled fluid structure interaction analysis.

coupled fluid structure interaction analysis

Functional Safety Analysis Improvements

ANSYS 19.2 makes it easier and faster to build, validate, and deploy digital twins and provides new functionalities for the development of autonomous and electric vehicles. ANSYS VRXPERIENCE allows users to use virtual reality simulation and predictive validation for autonomous vehicle simulation for additional intelligence such as smart headlamps, interior and exterior lighting, autonomous vehicle controls, and HMI validation. VRXPERIENCE uses realistic real-world simulation conditions including weather and road conditions, oncoming vehicles, pedestrian scenarios, and anticipation to critical situations.

build, validate, and deploy digital twins

Embedded Software Improvements Users can design easier and faster with embedded system architecture and develop and verify safety-critical embedded code. ANSYS SCADE Suite has been improved to the design verifier and the Simulink importer and now ANSYS SCADE LifeCycle offers Jama Software to support manageability tools and enable bidirectional generation of matrices.

Physics Simulation Improvements

ANSYS 19.2 expands the physics simulation capabilities into Optics and Optoelectronics to be able to design and simulate illumination, interior and exterior lighting, cameras, and optical performance faster than ever. The ability to simulate optical performance within a system allows designers and engineers to perfect the optical product performance while reducing development time and costs.

Physics Simulation Improvements

3D Design Exploration

ANSYS Discovery Live now allows users to use a parameter studies to test new ideas with minimal setup and run time. It allows designers to customize and learn more about simulation results to accomplish better design goals. ANSYS Discovery AIM includes improved physics-aware meshing for faster results.

3D Design Exploration

Design Simulation Improvements

Inverse analysis, material designer, and topology optimization enhancements allow engineers to calculate the cold shape of a component to achieve the desired hot shape and performance. ANSYS Additive Print and ANSYS Workbench Additive now includes physics-driven lattice optimization; additional topology optimization loading options; manufacturing constraints for additive manufacturing; and lattice optimization capabilities. These improvements help dramatically light-weight parts which saves companies a lot of material costs.

Design Simulation Improvements

Electromagnetic Design Improvements

New advancements include light-weight geometry modeling for rapid meshing and actor movement in road scene simulation – producing a simulation 20x faster than the previous release. ANSYS Icepak allows users to compute thermal impact from multiple electromagnetic loss connections and ANSYS SIwave allows users to easily define and explore printed circuit board (PCB) stackup layers to evaluate PCB design performance.

Electromagnetic Design Improvements

 

Learn more about ANSYS on our website.

EAC’s been in the engineering and design technology world for a long time. Over the years we’ve carefully cultivated our product portfolio to meet the ever-changing needs of people and companies that design, manufacture, and service products. Our partnerships with PTC and ANSYS allow us to offer a few different design simulation and analysis solutions to our customers.
Design simulation, Computer Aided Engineering (CAE), Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), and many other terms all fall into the “simulation and analysis” bucket. These tools help engineers and designers create virtual prototypes of their products. This helps groups rapidly prove, or disprove, design ideas in a digital space – reducing the time and money spent on physical prototypes, and increasing confidence in designs.

“If you’ve seen one, you’ve seen ‘em all” does not apply to simulation software. Different tools offer different benefits, accuracy, speed, and ease-of-use. Here’s a quick overview of some of the tools we offer. Contact our sales group to learn more about pricing, full capabilities, and packaging.

Option 1) PTC Creo Simulate

Simulate is a fantastic tool that’s fully integrated into PTC Creo Parametric CAD software. It offers fantastic meshing capabilities and accurate simulation results directly within a user’s familiar CAD software interface. All you need to do select the PTC Creo Simulate tab and you’re off and running. This is great for designers and engineers looking to test the stresses and loads under which a product will operate in ‘real world’ conditions. Based on your simulation and analysis results, you can either fix design flaws or forestall them. If you’re already using PTC Creo you should explore PTC Creo Simulate. Because, why would you ever manufacture a product without testing and analyzing it first? Creo Simulate comes in two flavors – Simulate and Advanced Simulate. They come with two different price points. One or the other might be the best option for your company. It really comes down to whether you need to simulate materials with linear or non-linear properties.

Option 2) ANSYS Discovery Live

ANSYS Discovery Live blows my mind. This tool was released in late 2017 and delivers functionality never seen before. Discovery Live uses ANSYS Discovery SpaceClaim to pull in IGES, STEP, and CAD models. Then the interface guides users through applying materials and some constraints – and Boom! It runs the simulation…in real-time…right in front of you. I’m talking about the ability to run wind-tunnel testing in real-time! Discovery Live is different from PTC Creo Simulate and most other simulation tools. It uses the Graphics Card (GPU) to run the simulation. This means it doesn’t occupy your core processor and RAM to while solving. You get better computer performance and instantaneous results for structural, thermal, fluid flow, wind tunnel, structural/fluid interaction, and more. Discovery Live is a great tool for engineers and designers that want to test a lot of design options quickly. The price is incredibly reasonable for a tool this powerful. You can see pricing and compare Discovery Live to AIM here.

Option 3) ANSYS Discovery AIM

Sometimes simulating real-world conditions requires more features and control than tools like PTC Creo Simulate, Solidworks Simulation, or Discovery Live might offer. ANSYS Discovery AIM is a great option when that’s the case. ANSYS Discovery AIM is a “multi-physics” simulation tool. What does that mean? Multi-Physics or Multiphysics refers to the ability to combine properties and solvers to simulate product usage. “Physics” in the simulation world refers to the kinds of simulation you are running – e.g. electromagnetic, thermal, structural, radio frequency, fluid flow, etc. AIM is a workflow driven multi-physics tool. It guides users through the steps necessary to complete a successful simulation. This is the perfect option when companies want a robust solution, but may not have experienced analysts on staff. Much like how PTC Creo Simulate maintains a familiar interface to make simulations easier; AIM uses guided workflows to make detailed upfront simulation accessible to engineers and designers.

Option 4) Dedicated ANSYS analysis software

When product simulation and analysis goes to the next level you need the ANSYS flagship products. These are sometimes known as the ANSYS Workbench products. Unlike PTC Creo Simulate or the Discovery software, each of these tools focus on one area of simulation…and deliver results you can take to the bank (or the regulatory agency). They are more complicated and come with a higher price point, but the results are unmatched. ANSYS’ comprehensive software suite spans the entire range of physics, providing access to virtually any field of engineering simulation that a design process requires. Organizations around the world trust ANSYS to deliver the best value for their engineering simulation software investment. If you need to test a specific physic – fluids, structures, electronics, semiconductors, or embedded software – this is the option for you. Contact us to learn more about a specific solution’s pricing and functionality. Also, if you’re a start-up make sure you ask us about special offers available through the start-up/entrepreneur program.

So there you have it. My layman’s take on a variety of simulation options. I hope you found this helpful. Please reach out to us if you have any questions or would like to see a demonstration of any of these tools.

Did you know you can test and simulate designs in a matter of seconds, with just a few simple parameters? You can. Take a look at the video at the top of this post. That’s not magic. It’s Discovery Live. In this video ANSYS runs simulations on 4 design ideas in about 20 seconds!

Engineers and designers constantly need to test new designs and changes to existing designs. Running complex simulations and building physical prototypes is expensive and takes a lot of time. It can slow down the design process and force engineers to jump in and out of a projects. Modern simulation tools help you speed up your design process, validate designs, and save time.

ANSYS coined the phrase “engineering at the speed of thought.” It’s a little corny, but it’s pretty accurate. Engineers and designers can save a lot of time by immediately testing design iterations to quickly define good ideas, and rule out bad ones. How much time could you save by running simulations upfront in the design process?

Discovery Live is perfect for all engineers and designers – whether or not you’ve used simulation before. You can learn more about Discovery Live here. You can also start a free trial if you want to try it out for yourself (you’ll just need to create an account with ansys.com). All it takes is a computer with a modern NVIDIA graphics card that has at least 4GB of RAM. Check it out. Compare ANSYS Discovery packages/prices here. We partner with ANSYS to provide solutions like Discovery Live to people like you – Contact us to learn more

Want more? See it in action during this 28 minute ANSYS Discovery Live (and AIM) demonstration video.

Designers and engineers need to quickly create and validate design concepts/changes to understand the impact they have on a product or process. Some simulation tools require specialized computers and can make it difficult to successfully setup and execute simulations. That is not the case with Discovery Live and its task-based intuitive workflow and solving engine!

Discovery Live is true to its namesake. It helps engineers and designers run upfront design level simulations live, in real-time, leveraging the power of modern graphics cards. This allows people like you to quickly optimize geometrical features and explore variations in geometry and operating conditions.

This toolset helps engineers and designers optimize designs variations prior to the creation of physical prototypes or passing their designs to dedicated analysts for details analysis – dramatically cutting down on design cycle time. This is a new chapter for product design.

So, what does the speed of ANSYS Discovery Live mean for you? It means finding design performance, and experimentation on the most complex models is available and instant. It means no problems with model integrity, or things like meshing, as you see immediate insight and trends into your designs. It means having an interactive simulation experience where you test your ideas in real-time. Discovery Live is the low-cost upfront simulation tool providing the insight you need at the speed you demand.

Learn more about ANSYS and Discovery Live here. You can also compare ANSYS Discovery packages/prices and start a Free ANSYS Discovery Live trial here.

See it in action during this 28 minute ANSYS Discovery Live (and AIM) demonstration video.

And, as always, let us know if we can answer any questions or show you a little more about any of the ANSYS tools.

 

As products become more complicated with the convergence of the physical and digital worlds, companies face additional pressure to drive innovation and increase product quality. If you don’t already know – ANSYS released their latest product update a few weeks ago – ANSYS 19. The newest release allows for your team to accomplish lower cycle times and reduce costs while increasing quality and eliminating risk.
“With the digital revolution accelerating the pace of disruption and product innovation, engineers must overcome extraordinarily sophisticated design and engineering challenges to deliver breakthrough products faster than ever,” says Eric Bantegnie, Vice President Systems Business Unit at ANSYS. “With ANSYS 19, engineers can use simulation pervasively to tame complexity and spur innovation at every level, resulting in the next generation of smarter, more cutting-edge products.”

ANSYS 19 delivers enhancements to ANSYS’ entire product offerings; structures to fluids, systems and semiconductors, and electromagnetics. ANSYS 19 delivers simulation and analysis solutions that greatly enhance productivity and create a more seamless workflow at every stage — empowering engineers to accomplish more in shorter timelines. 

For those of you, whether you’re a designer, engineer, or upper management that makes decisions that affect the way your team develops products within your company, you’ll want to take a look at these new features.

  • 3D Design: Discovery Live, Discovery SpaceClaim, Discovery AIM
  • Electromagnetics: Design with wireless, autonomous, & electrification technologies
  • Embedded Software: Embedded software & human machine interface design capabilities
  • Fluids: Create more accurate computational fluid dynamics (CFD) simulations
  • Semiconductors: Solve power noise, thermal properties, reliability, & performance
  • Structures: Access faster solvers and increased availability of high performance
  • Systems: Systems simulation for battery management design and deployment & functional safety analysis for all safety-critical industries

Improvements at the solver and technology level result in even faster, more powerful product performance. ANSYS 19 improves time to market and increases engineers’ productivity. Take a look at the new ANSYS 19 features here.

Contact our ANSYS Business Unit Manager, Jeff Huber, for further questions or interest.