
The dynamic duo, Bonnie and Clyde, the perfect pair: Formlabs 3D printers and PTC Creo. Combining these two technology leaders advance businesses to their full potential. When you combine Formlabs 3D printers with PTC Creo, you get an unbeatable combination for creating designs, prototypes and final products.
What is PTC Creo?
PTC Creo is a cutting-edge CAD software with an intuitive user interface that makes it easy to design and optimize your 3D models.
With PTC Creo, you can create high-quality 3D models with powerful features for analysis, visualization, and manufacturing. You can also import existing data from other applications or use the built-in tools to convert 2D drawings into 3D models.
This 3D CAD software solution also has options for live simulation tests to minimize prototyping. You can make sure the parts you are printing have been tested for durability before they even reach the physical world.

What are Formlabs 3D Printers?
Outside of the outcome being a cool physical representation of your design, 3D printing is a fast and cost-effective way to prototype your product.
Formlabs printers use stereolithography technology (SLA) to produce high-quality parts with smooth surfaces, sharp details and no visible layers or seams – all while being fast enough for production-level throughputs. And because they’re so precise, they’re ideal for creating prototypes that look just like what customers expect from final products!
By using 3D printing, you can create prototypes that look like the final product and test them before mass production. This allows you to make changes based on user feedback before investing in tooling for manufacturing. This hardware can save you time and money on low-waste prototypes and production and improve product quality.
Combining Formlabs 3D Printing with PTC Creo
PTC Creo is an industry-leading CAD software that allows you to model, design and simulate your products. Formlabs 3D printers are the best way to bring these digital designs into physical form. When you combine PTC Creo with Formlabs 3D printing, you can:
Reduce time-to-market by enabling designers and engineers to iterate more quickly on their designs before committing them to tooling or manufacturing processes.
Improve product quality by being able to prototype complex geometries that would otherwise be difficult or impossible using traditional manufacturing methods.
Increase design accuracy by allowing for greater flexibility in prototyping new concepts without the constraints imposed by traditional manufacturing processes.

Using Formlabs 3D Printers with PTC Creo
Using Formlabs 3D printers have many benefits. It’s an inexpensive and quick way to produce prototypes, which can be used to test or validate your design before investing in expensive tooling.
Some benefits that you will see form Formlabs printers:
You can also use 3D printed parts as production-quality end products to save time and money on manufacturing while maintaining quality control throughout the process.
If you’re already using PTC Creo for your CAD/CAM needs, then combining it with Formlabs 3D printers is a smart move because they both offer powerful toolsets that have easy collaboration.
EAC has partnered with Formlabs since 2016 and we now have almost 50 customers using both Creo software and Formlabs printers.
So if you use either of those products today (or plan on doing so soon), this article will show how easy it is for them to work together!
All-in-one in house design and printing creates a smooth-running production process that will save your business money.
Here are some of the benefits of using Formlabs 3D printers with PTC Creo:
1. Faster Prototyping
When combined with PTC Creo, 3D printing with Formlabs printers is fast and efficient – you can quickly iterate on designs and convert your files to create high-quality prototypes. This means you can get your product to market faster and stay ahead of the competition.
Formlabs printers are faster print times with no visible layering and fewer supports needed to clean off.
Also, Converting PTC Creo files to files that are readable on Formlabs printers takes a few minutes on a free Formlabs converter called Freeform. It’s easy to upload a Creo design file into Freeform to convert it to an STL file and then send it directly to your Formlabs printer. Your prints will be ready to go in no time.
2. Improved Design Accuracy and Customization
Formlabs 3D printers offer high resolution and accurate prints, which means you can create prototypes that look and feel like the final product. This allows you to test your designs more accurately and make changes before committing to manufacturing.
Customization and small-scale production runs, which are great for creating unique products or limited edition runs, are made possible with Formlabs 3D Printers. PTC Creo can help you design and optimize these products to meet your exact specifications with the versatility of tools that it provides.
3. Cost Savings
By using Formlabs 3D printing for prototyping, you can save money on tooling and manufacturing costs. This is especially true with Formlabs printers, which offer high-quality prints at a lower cost than traditional manufacturing methods.
While there are some printers that have direct integrations from PTC Creo, you could be spending $50k-$80k more on printers. Converting PTC Creo files to files that are readable on Formlabs printers takes a few minutes and costs you nothing.
4. Increased Productivity
By combining PTC Creo and Formlabs 3D printers, you can work more efficiently and get more done in less time. PTC Creo’s powerful design tools and Formlabs’ fast printing speeds allow you to create high-quality prototypes and final products quickly and easily.
Conclusion
Taking advantage of the power of PTC Creo 3D CAD software for product design and creation and advanced Formlabs 3D printers for physical production, you get an unbeatable combination for creating prototypes and final products.
In conclusion, combining Formlabs 3D printers with PTC Creo offers numerous benefits that can help you create high-quality prototypes and final products faster, more accurately, and at a lower cost. So, if you’re looking to innovate your product design process, consider using Formlabs printers with PTC Creo.
Reach out to one of our experts to find out which solution would benefit your production process.
I have a twin! Well, I have a digital twin. You probably do too. If you’re unfamiliar with the concept of a digital twin, don’t fret—you’re not alone. In fact, this technology is relatively new and still developing.
The idea of creating virtual models to simulate real-life situations isn’t new. NASA uses digital twins to run simulations and test flights on airplanes before they’re actually flown by pilots in person or sent into space with astronauts aboard them (pretty cool right?). However, until now there hasn’t been much focus on how we could apply these same concepts outside the aerospace industry — until now that is…
The idea of a digital twin is simple to understand. A digital twin is a virtual model of a process, product, or service that can be used to:
- Improve performance: Understand how a process works, and improve it.
- Explore new ideas: Imagine what could happen in the future, and create it now.
- Make better decisions: See what’s happening on the ground in real time, so you can make confident decisions for your business.
- Reduce risk: Identify potential problems before they occur and fix them before they cause issues for customers or colleagues.
- Improve efficiency: Maximize resources to get more out of them than would be possible otherwise – whether that’s staff time, materials or energy consumption – by turning data into insights for everyone involved in a system (including those who aren’t currently involved).
Digital twins are used to run simulations using predictive analytics and data from sensors that are attached to airplanes and engines. These “test flights” for engines and airplanes allow for safe experimentation and troubleshooting without risking human life or harming the equipment. More recently however, the potential use cases for digital twins have expanded beyond industry.
NASA’s journey with the digital twin
NASA’s Advanced Turbine Systems Project (ATSP) has created a digital twin of their Pratt & Whitney PW1000G geared turbofan engine used in aviation systems like Boeing’s 737 MAX series aircrafts. This makes it possible for engineers at NASA’s Glenn Research Center in Cleveland, Ohio to monitor real world conditions on an airplane remotely via computer software without having any physical connection between themselves and the airplane itself – all from their office desktops!
Digital twins aren’t limited just to planes though – they can be applied anywhere where there is an application that would benefit from being able to predict future outcomes based off current data gathered through sensors placed around said device/application/process etc…
Today, digital twins are being used in healthcare to help monitor a patient’s health in real time. Augmented Reality (AR), simulated environments, and virtual reality (VR) can all be used with the data provided by digital twins to improve patient outcomes. For instance, AR could be used by surgeons during an operation or VR can be used by physicians to practice risky procedures in a simulated environment before they operate on an actual patient.
The list of potential uses for a digital twin is seemingly endless, but one thing they all have in common is their ability to collect data. For example, an AR system could be used by surgeons to visualize a patient’s anatomy in real time and allow for better planning of surgical procedures.
Virtual reality (VR) can be used by physicians to practice risky procedures in a simulated environment before they operate on an actual patient. The benefits of this approach include the reduction or elimination of unnecessary risks during surgery as well as the reduction or elimination of costs associated with conducting unnecessary surgeries that did not need to take place because the physicians were not sufficiently trained prior to operating on real patients (which can lead to malpractice lawsuits).
The idea behind digital twins goes beyond the practical uses of this technology—it is rooted in the desire to create a more connected world where people’s decisions can be made with better information than what has been available in the past. When we’re able to see how our choices impact different systems—for example, seeing how changing one variable will affect overall energy consumption—we gain better insight into how we can create a more sustainable future.
As you may have heard, a digital twin is an avatar that represents your physical system. It’s kind of like an actor who plays the role of “you” in the virtual world and learns how to be more efficient, safer, and easier to use over time. This concept can be applied across systems ranging from trains to buildings to entire cities. Since all systems are made up of parts that must work together in order for a system as a whole to function properly (think about how many things need to go right just so you can take a shower), it makes sense that we’d want an accurate representation of those parts—and their interactions—in order for us humans running them not to make mistakes or waste energy unnecessarily.
As we’ve seen in this post, digital twins can be used for many different purposes. The technology has already been applied to industrial processes, healthcare, and the energy sector. In the future, we’ll likely see more uses for digital twins in retail and other industries as well. What will your digital twin look like?