complex CAD model breakdown

Developing complex products in CAD (computer-aided design) with a distributed team can be a challenging task. However, with Creo Parametric’s Advanced Assembly Extension [AAX], managing distributed development becomes a seamless process even on a global scale.

This powerful extension facilitates and automates the exploration of product assembly variations and adds intelligence to your CAD design assembly so it reacts correctly in any situation.

Clearly Defining and Communicating Complex Design Intent

To kickstart any complex design project within CAD, it is vital to have a clearly defined source of design intent. This serves as the backbone of the development process and enables smooth collaboration among team members.

Furthermore, Creo Parametric AAX has tools for creating and managing space claims, assembly interfaces, and location points. These features help define design intent and make sharing information easy. With a clear and structured design intent, it becomes much easier for team members to understand their tasks and contribute effectively.

top level assembly

Distribution and Communication of Design Intent

Once the design intent is defined, the next crucial step is to distribute and communicate this intent to team members efficiently. Creo Parametric AAX allows team members to focus on their relevant tasks by providing options to copy relevant geometry or use published geometry in their subsystem. This ensures that each team member can work on what’s relevant to their task without any confusion or delays.

Controlling Inter-Dependencies

Intelligent inter-dependency management within a complex product design is essential to ensure flexibility and adaptability. Advanced Assembly offers powerful tools to create and track desired interdependencies, preventing the creation of unwanted relationships that can hinder design flexibility.

By allowing users to control inter-dependencies effectively, teams can confidently make changes and reuse design components while maintaining the integrity of the complex product.

Leave No Rock Unturned with Complex Designs

The path to innovation often involves exploring multiple iterations and variations of a design. This Creo extension empowers designers to leave no stone unturned by offering efficient tools to create and manage assembly variations.

Families of Assembly Designs

Creating new assemblies for minor variations or component substitutions can be time-consuming and unnecessary. Creo Parametric AAX simplifies this process by allowing designers to define variations in assembly dimensions or switch out components without the need for separate assemblies.

By identifying what differs from the original design, designers can switch family instances of component family tables or subassembly family tables effortlessly, with automation taking care of the rest.

Interchange Parts and Assemblies

The ability to interchange functionally equivalent components is a valuable feature when exploring design variations. This CAD extension enables designers to relate independent components, making it easy to switch them within an assembly. Additionally, simplified exchange members can be substituted into a design to streamline the display while retaining accurate mass property information.

Raising the IQ of your Complex Design

Dealing with constant change is a fundamental aspect of design. Creo Parametric AAX allows designers to enhance their complex models with intelligent logic, automating component sizing based on calculations or user input.

This intelligence extends to switching out components or subassemblies automatically for Family Table or Interchange instances when specific conditions are met. By raising the IQ of your design, you can navigate design changes faster and more efficiently.

How to Put it Together or Take it Apart

Ensuring smooth communication of assembly procedures is crucial for efficient manufacturing and engineering processes. This extension for complex designs offers intuitive process planning functionality to disseminate process information effectively throughout the organization.

Easily Create Assembly Process Sequences

With user-friendly tools, users can define assembly processes step by step. With intuitive drag-and-drop techniques, exploded views, and jogged explode offset lines, AAX provides a clear and accurate representation of each process step, making it easy for all stakeholders to understand the assembly process.

skeleton model and the main frame of the mower.

Create Alternate Bills of Materials (BOMs)

Creo Parametric AAX empowers users to create alternative BOMs that reflect specific assembly stages or grouping of design components based on the assembly process. These alternative BOMs, such as manufactured BOMs or fabrication BOMs, enable clear communication of the assembly process and facilitate efficient manufacturing operations.

Creo Parametric Advanced Assembly Extension [AAX] offers a comprehensive suite of tools and functionalities to manage the distributed development of complex designs.

From clearly defining and communicating design intent to exploring design variations and enhancing design intelligence, AAX ensures that no aspect of the design process goes untouched. By leveraging this extension, design teams can collaborate effectively, respond to changes efficiently, and create flexible and reusable complex products

Woman working at a desk with an iPad

 

Attention engineers! There’s an easier way to conduct Tolerance Analysis for your CAD designs.

Transforming CAD designs into real and tangible parts is not only rewarding on a personal level but also professionally fulfilling. It combines creativity, problem-solving, and hands-on experience, all culminating in the sense of accomplishment that comes from creating something real from an abstract concept.

 

However, as you already know, physical parts deviate from the idealized representation (the design model) due to many different challenges and manufacturing constraints. Tolerance analysis involves assessing the impact of variations in dimensions, geometries, and other parameters on the final product’s performance and functionality. By utilizing Tolerance Analysis, designers ensure proper fit and alignment of the product components.

 

Improve Quality & Design Innovation

If the goal is to improve quality and design innovation, enable your engineers to perform comprehensive tolerance stack-up analysis. Traditionally this process is a massive pain i.e. repetitive trial-and-error tasks and tedious testing. This part of the design process can be frustrating and often slows down design teams. However, it doesn’t have to be this way!

 

The PTC Creo EZ Tolerance Analysis Extension is a dynamic computer-aided engineering (CAE) tool powered by leading Sigmetrix technology. This extension helps designers by creating a faster, more intuitive workflow to assess the impact of dimensional specifications on your product designs before prototypes or production.

 

The software provides algorithms to help engineers identify the optimal tolerance values that meet the design objectives while considering various constraints. This aids in making informed decisions and reducing the time spent on manual analysis and evaluations.

 

By considering these variations even earlier in the design process, engineers can make more informed decisions to ensure that the final product will perform as intended. Cheers to reinforcing Closed Loop Manufacturing!

 

The Positive Business Outcomes of Using EZ Tolerance Analysis

 

Below is a high-level overview of the positive business outcomes this PTC solution proves to provide for manufacturing companies:

  • Speed time to market
  • Mitigate risk
  • Improve productivity
  • Reduce costs by reducing rework and scrap

How EZ Tolerance Analysis Makes Your Workflow Less Stressful

Intuitive User Interface

Achieve your goals efficiently with minimal frustration. The EZ Tolerance Analysis extension’s user-friendly UI enables you to maintain a flow and continue work without disruptions as it is integrated into the familiar Creo environment. This mitigates any steep learning curve and helps with productivity to get new users up and running quickly and confidently. If you need help getting set up with the technology, give us a shout. We can help maximize your workforce capabilities and your technology investment.

 

Complexity Management

The EZ Tolerance Analysis software provides tools and features to manage complex designs efficiently. It offers intuitive interfaces and workflows that simplify processes regarding defining tolerance features. The extension extracts relevant information directly from your CAD models, reducing manual effort and potential errors. Visual dashboards: say goodbye to tedious spreadsheets.

 

Problem Identification and Resolution

No more flying blind, EZ Tolerance Analysis provides visualizations and statistical outputs that enable engineers to identify potential issues and bottlenecks in the assembly or system. After pinpointing problematic areas, engineers can devise effective solutions – such as adjusting tolerances, redesigning components, or modifying manufacturing processes.

 

Quick Iterative Design Refinement

Perform your “what-if” scenarios quickly and accurately. Using Sigmetrix technology, get immediate feedback on the effects of tolerance adjustments and trade-off analysis. Engineers can quickly refine and optimize tolerances based on the analysis results, reducing the time required for iterations.

Improved Collaboration

The software facilitates collaboration among multidisciplinary teams involved in the design and manufacturing process. Easily share tolerance analysis data, models, and reports via HTML reports to ensure everyone comprehensively understands design intent and can make informed decisions. Visual and data-backed reports can be shared with the shop floor, suppliers, or other stakeholders, facilitating effective communication and collaboration. Providing clear documentation helps to minimize misunderstandings and costly mistakes, saving time and effort in the design and manufacturing process.

Standards and Specifications Compliance

Ensure compliance with built-in libraries of industry standards and specifications. Engineers can access these libraries to ensure that defined tolerances comply with the relevant standards. Ensure compliance with ASME and ISO standards for your designs and create products that align precisely with customer requirements while operating within acceptable tolerances. This feature helps streamline the process of defining tolerance features by providing pre-defined templates and guidelines that match industry requirements.

Overall, EZ Tolerance Analysis empowers engineers to make data-driven decisions, reduce uncertainty, and enhance the efficiency and quality of the design and manufacturing process. It aids in achieving design objectives, meeting customer requirements, and delivering reliable and cost-effective products.

Back-Up Your cad Designs with Stack-Up Analysis

The technology performs comprehensive tolerance stack-up analysis by applying two methods for increased accuracy and precision- worst-case analysis and statistical analysis.

Worst-Case Analysis: Worst-case analysis, commonly employed for critical components, examines the scenario where each component in the stack-up attains its maximum acceptable measurement.

Statistical Analysis: On the other hand, statistical analysis utilizes statistical distribution models to represent the variation of each component. These distributions are then combined to predict the overall distribution of the assembly measurement.

 

 

Related Technologies To Use With Tolerance Analysis

 

Combine Tolerance Analysis with Geometric Dimensioning and Tolerancing (GD&T) to ensure your designs comply with ASME and ISO standards. Or take your designs even further to contain all the data needed to define the product with model-based definition (MBD). With MBD, your model becomes the source authority across the enterprise. The outcome is shorter product development cycles, reduced costs, and enhanced product quality.

 

PTC continues its investments in enhancing simulation-driven design and generative design with the new Creo 10. Some new features include Rotational Symmetry, Mass Point Constraints, and Remote Loads. Additionally, Creo Simulation Live now includes Contact Simulation options and improved options for fluid and structural results. Creo Flow Analysis and Creo Simulation now have better animation and multibody support. 

 

For more Simulation and Analysis, we also recommend PTC’s Creo Simulation Advanced powered by Ansys technology. The brand-new Creo Ansys Simulation Advanced analyzes nonlinear contact and materials, with combined thermal and structural analysis. For more information about the latest release of Creo 10 check out the blog here.