Comparison from Form 4/Form4L

For businesses and professionals in need of fast, high-quality 3D printing, the Formlabs Form 4 and Form 4L each offer distinct advantages. Both models are known for precision and reliability, making them well-suited for industrial prototyping and production applications. The Form 4L, however, provides a larger build volume, allowing for more efficient production of larger parts as well as the ability to print larger quantities of smaller parts.

Here’s an overview of their key features and how each printer may suit different production requirements.

1. Build Volume and Part Size

The Form 4 is a powerful choice for small to medium-sized parts with detailed features, but the Form 4L is designed for larger applications.

  • Form 4: With a build volume of 20.0 × 12.5 × 21.0 cm, it’s well-suited for high-precision prototypes, small components, and assemblies.
  • Form 4L: Expands to a build volume of 35.3 × 19.6 × 35.0 cm, accommodating parts that are up to 4.6x larger than those possible with the Form 4. This enables production of sizable prototypes and large-format industrial parts. Additionally, the large build volume allows for printing of higher numbers of parts.

Winner: Form 4L – Perfect for large parts and batch printing without compromising on quality.

2. Print Speed

Both the Form 4 and Form 4L use Low Force Display (LFD) technology for fast and precise printing. The Form 4L’s larger build area can handle larger layers more quickly, which speeds up the printing process for big parts.

  • Form 4: Ideal for fast small-batch or single-part production, with the ability to complete most prints within two hours.
  • Form 4L: Capable of producing large parts in under six hours, making it an excellent option for industries needing big parts on tight timelines. Also, the larger volume is nearly 3 times as large as the Form 4. In that case, the 4L is actually much faster than the Form 4 when printing parts that would normally only be printed one at a time on the Form 4

Winner: Form 4L – Efficient for larger parts and quick prototyping of multiple parts simultaneously.

3. Print Quality and Surface Finish

Both printers offer high-quality finishes and exceptional detail, with anti-aliasing and advanced optics for smooth, sharp edges.

  • Form 4: Provides dimensional accuracy within ±0.15% and delivers surface finishes that rival injection molding.
  • Form 4L: Matches the print quality of the Form 4, ensuring that large parts maintain the same smooth surface finish and high level of detail.

Winner: Draw – Both printers offer exceptional quality, with Form 4L retaining the same precision on larger parts.

4. Materials and Versatility

Both models support a vast range of Formlabs resins and are compatible with certified third-party materials, adding to their versatility.

  • Form 4: Optimized for engineering-grade materials, including impact-resistant, flexible, and flame-retardant options.
  • Form 4L: Supports the same extensive material range but allows for larger quantities, which is essential for sizable industrial parts or high-volume production.

Winner: Draw – Both printers provide robust material compatibility, giving users flexibility across applications.

5. Ease of Use and Workflow Integration

Formlabs prioritizes ease of use and smooth workflow with PreForm software, integrated cameras, and remote monitoring options for both printers. The Form 4L adds features like a 5L Resin Pumping System and automatic resin dispensing to handle the demands of large-scale printing.

  • Form 4: Simple enough for new users to operate within 15 minutes, with a straightforward setup process.
  • Form 4L: Adds efficiencies like automated resin handling, reducing manual intervention for large prints.

Winner: Form 4L – Simplified for high-volume work with advanced resin management.

6. Reliability and Consumable Management

The reliability of both the Form 4 and Form 4L is reinforced by intelligent control systems, validated print settings, and re-engineered consumables for long-lasting performance.

  • Form 4: Features factory calibration and light touch supports to reduce peel forces and prevent print failures.
  • Form 4L: Includes the same reliability features and is built to handle the additional load of larger prints with robust consumables and advanced diagnostic tools.

Winner: Draw – Both printers are engineered for dependable performance, with the Form 4L optimized for bigger prints.

7. Post-Processing

Both printers integrate with Formlabs’ Form Wash and Form Cure systems Both machines also offer a flexible build plate (Form 4L Flexible Build plate available soon).

  • Form 4: A flexible build plate option for the Form 4 means part removal is very simple.
  • Form 4L: The Form 4L also offers a flexible build plate.

Winner: Draw – Both printers offer flexible build plates for easy part removal..

8. Pricing and Value

The Form 4 offers a cost-effective solution for small to medium-sized parts with high-quality output. The Form 4L, while more expensive, justifies its price with a larger build volume, faster production times for big prints, and lower operational costs for batch production.

  • Form 4: Ideal for smaller businesses or those who prioritize precision in compact prints.
  • Form 4L: Suited for high-volume, industrial applications where large-part production is essential.

Winner: Depends on need – Form 4 for affordability, Form 4L for large-scale production and batch printing.

Which Printer Should You Choose?

  • Choose the Form 4 if you need a high-quality, compact solution for prototyping and producing small parts, especially in a cost-effective setup.
  • Choose the Form 4L if you require a larger build volume, faster print speeds for big parts and multiple parts, and an optimized workflow for high-volume production.

Both the Form 4 and Form 4L offer outstanding value for different production needs. The Form 4 provides a powerful, affordable option for precise smaller parts, while the Form 4L enables faster, large-scale production without compromising on quality.

Whether you’re focused on cost-effective prototyping or large-scale production, you can find both models on EAC Additive’s e-store to fit your specific manufacturing goals.

The top processes in Additive Manufacturing (AM) can be generally categorized as filament-based, resin-based, or powder-based. While there are some variations in these processes, the vast majority of materials fall within these three categories. Additive Manufacturing has a wide range of materials that fit many different applications and industries. From aerospace, engineering, automotive, medical, and so many more, looking at different properties can help you decide what material is best for you and your specific needs

1. Fused Filament Fabrication (FFF)

Filament-based materials are typically housed in a spool format. Filaments are commonly found in two diameters: 1.75mm and 3mm with the former being the most common. By far the largest variety of materials for AM are available as filament. The most common include:

  • By far the most common material for filament-based printing. It is also available in a wide range of composite variations including carbon fiber and glass filled.
  • This is a type of polyester made from fermented plant starch. As it is plant-based it is considered one of the most environmentally friendly plastics available.
  • Very easy to print on most 3D printers. It prints at a relatively low temperature and is less prone to warping than other materials.
  • Printed parts are dimensionally stable and more rigid than other polymers like ABS. Some PLA variations can also be annealed for greater strength.
  • Offers a low-cost option for prototyping.
  • Offers properties similar to ABS in terms of durability.
  • It is not as easy to print with PLA as parts can shrink and curl off the print bed. Requires higher temperatures than PLA.
  • Also available as a composite with other materials such as carbon fiber and glass-filled.
  • PETG is fully recyclable and considered environmentally friendly.
  • Great for prototyping parts that require chemical resistance and durability.
  • Strong and durable with high-impact resistance.
  • Popular for prototyping injection molded parts that will ultimately use ABS in production.
  • It can be tricky to print with these materials on printers that do not have a heated chamber.
  • Not as environmentally friendly as other materials, but can be recycled.

Filament-based materials are also available in some interesting variations including:

  • ASA – (Acrylonitrile styrene acrylate)
  • Igus Iglide
    • a slippery material used for bearings
  • BASF Ultrafuse 316L
    • stainless steel powder in a binder that can be used to print metal parts
  • PEI (Polyetherimides)ULTEM
  • PAEK (Polyaryletherketone) family of polymers
  • PEEK and PEKK (and other variations)

PEI and PAEK materials have exceptional thermal and mechanical properties making them ideal for aerospace and medical applications. They require very high temperatures in an enclosed environment in order to print well. They are also available as composites with carbon fiber and glass fiber.

2. Powder-Based Materials

These materials are available in fine powder. The powder is used in processes such as SLS (Selective Laser Sintering), MJF (Multi Jet Fusion), DMLS (Direct Metal Laser Sintering), and Binder Jetting.

The most common powder-based materials include:

  • Nylon materials offer a wide range of characteristics, however, in 3D printing, the most commonly produce rigid parts in the form of PA12 and PA11.
  • Excellent durability and chemical resistant.
  • Perfect for prototyping parts that may ultimately be molded from the same material.
  • With finishing, this material can produce injection-molded like quality for end-use parts.
  • Lightweight, ductile, and chemically resistant.
  • The only powder-based material that is watertight.
  • It can be spin-welded.
  • Uses DMLS to melt the powder into shape.
  • A wide range of metal powders are available including Aluminum, Copper, Stainless Steel, and Titanium.

3. Vat Photopolymerisation Materials

These materials use a photoreactive resin that solidifies when exposed to a particular wavelength of light. The most common processes include SLA (Stereo Lithographic Apparatus), MSLA (Masked SLA), and DLP (Digital Light Processing). One of the challenging aspects of these resin-based processes is the classification of materials. Unlike filament and powder, resins derive their properties from chemical reactions that do not rely on heat. As a result, resin materials are generally classified based on the physical characteristics of their final (cured) state.

Elastomeric
  • Parts with varying degrees of elasticity range in durometers as low as 40A.
  • Behaviors similar to silicone.
  • Some manufacturers offer pure silicone resins.
  • Parts that are optically clear can be used in applications that require transparency including lenses
  • Exhibits similar qualities to polypropylene.
  • Dimensionally stable and rigid parts.
  • In some cases glass filled.
  • Often used for prototype mold tooling.
  • Often equated with ABS.
  • It can be used for end-use parts


For those who have worked with 3D printers in the early days of 3D printing over 30 years ago, their first exposure to 3D printed parts was likely a photopolymer part. In those days, the parts were extremely brittle and could barely be used for more than a visual representation of a part. Over the last few years, that has changed dramatically. Resin-based parts can hold their own when compared to other AM processes.

The amount of materials available for Additive Manufacturing is enormous and covers a wide gamut of performance, aesthetics, and practicality. That said, there is a narrow band of materials that are most popular. Manufacturers of these materials encourage AM users to explore beyond this narrow selection in an effort to promote end-use adoption of AM as a viable production solution. There are many cases where 3D-printed parts have matched (or even exceeded) the performance of parts produced using injection molding or machining. By selecting a material that can be used for both prototyping and end-use, the development and production processes can be seamless.

In the ever-changing landscape of manufacturing, additive manufacturing (AM) is transforming the way companies are designing, and manufacturing products. Its promise of design flexibility, cost efficiency, speed, and sustainability makes it an attractive option for manufacturers across various industries.

With around 2 million people worldwide using 3D printers, the technology’s adoption reflects a growing trend towards more customized, on-demand production methods. However, before diving headfirst into the adoption of this technology, it is essential to take a step back and thoroughly assess your current processes. This foundational step ensures a seamless integration and optimization of AM technology, ensuring you gain the maximum return on your investment. Below, we dive into the significance of assessing your current processes as a gateway to the effective adoption of additive manufacturing solutions.

Understanding the Current Process

The first step in any significant change is understanding where you currently stand. Conducting a comprehensive assessment of your existing processes provides a clear picture of your manufacturing operations. This includes evaluating your production methods, supply chain, workforce capabilities, and overall business objectives. By gaining a deep understanding of your current state, you can identify areas where additive manufacturing can bring the most value and pinpoint potential challenges that need to be addressed.

Identifying Inefficiencies the Current Process

Every manufacturing process has its inefficiencies, whether it’s excessive material waste, long lead times, or high production costs. Assessing your current processes allows you to identify these inefficiencies and determine how additive manufacturing can help mitigate them. For instance, if your production involves a lot of material wastage due to subtractive methods, Additive Manufacturing’s layer-by-layer approach can significantly reduce waste. Similarly, if long lead times are a bottleneck, the rapid prototyping capabilities can speed up your production cycles.

Evaluating Cost-Benefit Ratio

Implementing additive manufacturing technologies requires an investment in equipment, training, and potentially reengineering your production workflows. By assessing your current processes, you can conduct a cost-benefit analysis to determine the financial viability of adopting Additive Manufacturing. This involves comparing the costs associated with traditional manufacturing methods against the potential savings and added value that it can bring. Factors such as reduced material costs, lower inventory requirements, and increased production efficiency should be considered in this analysis. Companies have seen a 40% reduction in material costs and a 70% reduction in overall product costs by implementing these technologies only increasing their cost to benefit ratio!

Ensuring Compatibility with Existing Systems

One of the critical aspects of integrating additive manufacturing into your operations is ensuring compatibility with your existing systems. This includes your design software, production equipment, and supply chain processes. Assessing your current processes helps identify any gaps or incompatibilities that need to be addressed. For instance, you may need to upgrade your CAD software to support the complex designs enabled by AM or reconfigure your production floor to accommodate new 3D printing equipment. Ensuring seamless integration minimizes disruptions and maximizes the impact of your new manufacturing setup.

Workforce Training and Skill Development

Adopting additive manufacturing technologies often requires a shift in skill sets and knowledge within your workforce. This critical step of assessing your current processes includes evaluating the readiness and capabilities of your employees to work with AM technologies. Keeping in mind that 42% of companies state that the lack of expertise and understanding of AM technologies is the biggest barrier to its adoption, it’s crucial to identify skill gaps and develop a training plan. Equipping your workforce with the necessary knowledge and expertise is not just about a smooth transition, but it is also key to maximizing the benefits of AM. By investing in training and skill development, you’re not only setting the stage for a more effective integration but also empowering your employees to fully leverage the potential of additive manufacturing.

Aligning with Business Objectives

Every business has its unique set of objectives, whether it’s improving product quality, reducing costs, or increasing production speed. Assessing your current processes helps ensure that the adoption of additive manufacturing aligns with your overarching business goals. By understanding how AM can contribute to these objectives, you can develop a strategic implementation plan that maximizes its impact. For example, if your goal is to enhance product innovation, focus on how AM’s design flexibility can drive creative solutions. If cost reduction is a priority, emphasize the potential savings from reduced material waste and streamlined production processes.

Pilot Testing and Iterative Improvement

Before fully integrating additive manufacturing into your operations, it’s prudent to conduct pilot tests. These tests allow you to evaluate the performance of AM technologies in a controlled environment and identify any unforeseen challenges. By assessing your current processes, you can select appropriate pilot projects that provide valuable insights into the practical implications of AM. Pilot testing also offers an opportunity for iterative improvement, enabling you to refine your processes and address any issues before full-scale implementation.

Building a Robust Implementation Plan

A thorough assessment of your current processes provides the foundation for a robust implementation plan. This plan should outline the steps required to integrate additive manufacturing into your operations, including equipment acquisition, workforce training, process reengineering, and timeline management. By having a clear and detailed plan, you can ensure a systematic and organized transition to additive manufacturing, minimizing disruptions and maximizing the benefits.

Conclusion

The promise of additive manufacturing is undeniably compelling, offering a new era of innovation and efficiency in manufacturing. However, to truly harness its potential, it is essential to assess your current processes before diving into implementation. The assessment will provide a clear understanding of your existing operations, identify inefficiencies, evaluate the cost-benefit ratio, ensure compatibility with existing systems, and align with your business objectives. By taking this crucial step, you can pave the way for a successful transition to additive manufacturing, positioning your business at the forefront of technological innovation and operational excellence.

Embracing additive manufacturing is not just about adopting new technology; it’s about transforming your manufacturing processes to achieve greater efficiency, sustainability, and competitiveness. By assessing your current processes and planning strategically, you can unlock the full potential of additive manufacturing and drive your business toward a brighter, more innovative future.