New Creo 11 enhancements

Just like fine wine, Creo keeps getting better with time! Creo 11 by PTC offers numerous enhancements to improve the productivity, usability, and functionality of frequently used tools. In this blog post, we will explore the key updates in Creo 11 that aim to streamline workflows, enhance user experience, and boost efficiency in product design.

Usability Enhancements

Easily Access Creo Options

One of the standout features in Creo 11 is the ability to search and find settings in the options dialog easily. That being said, this enhancement enables you to locate relevant Creo options more quickly, reducing time spent navigating through menus and improving overall efficiency.

Improved Model Tree

Creo 11 introduces improved collapse/expand behavior and renaming capabilities in the model tree. Specifically, these enhancements enhance the user experience by making navigating and managing complex assemblies and parts within the software easier.

Enhanced Drag Handles

Due to popular demand, the software now offers improved drag handles for feature dimensions, simplifying identification and manipulation controls for complex features. This improvement simplifies the editing process and ensures a smoother user experience.

Selection Enhancements

Flexible Selection Options

Creo 11 introduces box, lasso, and trace selection support, providing you with more flexibility in selecting multiple surfaces and entities. You can now toggle between selecting all surfaces or only visible surfaces, improving the precision and speed of selection workflows.

Multi-Body Design for Sheetmetal

With the introduction of multi-body design capabilities for sheet metal parts, Creo 11 simplifies single-part design workflows and enables you to split single sheet metal parts into multiple parts. As a result, this feature allows for greater control over manufacturing and design costs and facilitates the design of multi-thickness sheet metal parts in context.

Simplification Features

Shrinkwrap and Merge Options

A new shrinkwrap option in Creo 11 allows you to collect bodies from referenced assemblies into a single part, streamlining the creation of simplified models. So, merge options for bodies in assemblies offer flexibility to keep separate objects, merge into single bodies, or merge all bodies for efficient design workflows.

Modeling and Design Enhancements

Enhanced Features

Creo 11 enhances modeling capabilities with features such as enclosure volume and new options for point patterns, for increased flexibility, and faster regeneration. These improvements aid in the creation of bounding boxes for optimization purposes and streamline pattern referencing workflows.

Welding and Surfacing Improvements

Welding Capabilities

Creo 11 provides a faster and more flexible definition of spot welds through improvements in spot welding functionality, joint members, and XMCF features. These enhancements increase productivity and eliminate additional steps in the welding process.

Surfacing Enhancements

Surfacing with freestyle and style features, including rotational pattern support, new bevel operations, and improved curve editing controls are new enhancements. These updates offer greater control over curves and surfaces, improved usability, and streamlined workflows for working with multi-level subdivisions.

Design for Electrification

Routed Systems

Creo 11 introduces improvements to routed systems, allowing for easier design and creation of electrical systems within the software. These enhancements include cabling, removal locations capability, dynamic previews in the graphics area, expandable filtering, and undo/redo functionality. These enhancements increase productivity and make designing and managing electrical systems easier within Creo.

ECAD

In addition to the improvements in routed systems, Creo 11 also includes enhancements to ECAD (Electronic Computer-Aided Design) functionality. Users of Solidworks and Inventor might know this as electrical-mechanical integration and compatibility enhancements. Enhanced ECAD visibility simplifies control and understanding of ECAD layer presentation through data visibility. These enhancements improve usability and provide more flexibility in the design of electrical systems.

Design for Composites

In addition, Creo 11 introduces expanded functionality for designing composite materials. This includes the ability to modify transitions in graphics, improved usability for laminate sections, and enhanced draping simulation. These enhancements make it easier to manage and visualize composites, improving usability and productivity. Additional improvements include zone-based design, enabling faster creation of large-scale composite products, and a conceptual top-down approach to composite design.

As for Model-Based Definition (MBD), Creo 11 also includes enhancements to make it easier to organize and manipulate data in a tabular form. MBD enhancements in Creo 11 include creating tables, adding semantic references, and supporting parameter callouts. Also, Creo 11 introduces support for STEP AP242, allowing for the export of PMI (Product and Manufacturing Information) information in a machine-readable format.

In simulation-driven design, Creo 11 introduces enhancements to improve accuracy and productivity in time-based motion analysis. These include updates to solvers, expanded structural and fluid results, and a new conjugate heat transfer capability. These enhancements allow for faster and more accurate predictions of heat transfer and structural optimization based on simulation results.

Design for Manufacturing

Connection Lattices

In response to the rise in additive manufacturing demands, Creo 11 introduces a new lattice command to connect two or more separate lattices, giving you more flexibility to create complex lattices. This workflow is straightforward and can be performed inside the same familiar Lattice UX. Additional enhancements include beam lattices, stochastic lattices, randomization value, and defining pore size. Moreover, you can also adjust simplified lattices using warp and export in 3MF/STL format. Finally, Creo 11 has added a penetration option for simplified lattices, providing additional flexibility to prepare parts for 3D printing, particularly in medical implants.

Subtractive Manufacturing

Creo 11 introduces new 4-axis rotary roughing and finishing toolpaths, which can pass 360 degrees and be used for crew-type parts. Also, Creo 11 supports end mill, ball mill, and bull nose mill. These enhancements provide automated roughing and finishing sequences, which will be applicable for automotive and oil field crankshafts, camshafts, and drill heads.

Milling

Another enhancement is trajectory milling or CAM Programming, which allows you to define entry and exit movement along the direction of the cut, reducing the possibility of breaking small tools. This method is also more efficient, saving time spent on retracts. Additionally, Creo 11 supports curves not on the surface and trim retract motion to a plane. You can now easily manage the display of manufacturing geometry in the graphics toolbar.

Turning

Creo 11 has modernized 4-axis area-turning user interfaces, providing a streamlined and consistent user interface across all toolpaths. Improved material removal cut functionality for profile turning and additional area turning capabilities have also been added to the 4-axis. Creo 11 now supports user_output_point, CUTCOM support at each slice, clear distance, and turn profile start and end driving the cut direction.

These enhancements in Creo 11 provide you with greater flexibility, productivity, and efficiency in all areas of your product design. By incorporating these new features, Creo 11 continues to lead the industry in product design and manufacturing. You can watch the Creo 11 Webinar to learn more at your convenience or reach out to one of our experts to see which enhancements would benefit you the most!

The capabilities and functionalities of computer-aided design software determine the achievements of design teams and, ultimately, the profitability of manufacturing companies. From concept design and large assemblies to emerging technologies – PTC Creo will always beat SolidWorks.

1. Concept Design

 

Within Concept Design, tools that help designers achieve quicker design iterations, reduce design rework, and testing on design concepts early on are vital. SolidWorks struggles with basic foundations to quickly create multiple and complex concept ID and proposal models. While easy revisions of concept models and conceptual design tools (aside from traditional and basic surfacing functions) seem like they should be a standard in CAD design programs, SolidWorks comes up short. The missing capabilities make design iterations like freeform surfacing an impossible task.

Contrary to SolidWorks, PTC’s Creo provides numerous, flexible tools so users can quickly turn ideas into concepts and models into detailed designs. With capabilities like freestyle, designers can quickly and easily create freestyle and parametric combination surfaces. Creo’s concept design tools empower engineers to quickly create 2D conceptual geometry, easily generate proposed concept variations and are seamlessly compatible with other sub-divisional initial surfacing. To minimize prototyping costs and decrease waste, Creo also provides early simulation for shaping initial surfacing.

 

2. Large Assemblies

 

Large assemblies are typically fighting three persistent problems: lengthy opening times and lack of memory, large drawings for slow loading, and lagging graphics with sudden crashes. SolidWorks does not provide solutions to those issues, but rather it has performance and stability constraints when loading large assemblies. SolidWorks is slow to respond to full assembly changes and lacks the capabilities for top-down design and concurrent engineering. All of these vulnerabilities lead to slow design processes and an increase in time-to-market – ultimately hindering the bottom line.

PTC Creo is the recognized leader in large assembly management and top-down design. PTC’s CAD solution is the strongest-performing software in loading and working with large assemblies. Multiple people can work on large assemblies and they don’t have to suffer usability and performance scales as the assembly size grows. As engineers make major changes to the assemblies there are predictable outcomes that are easy to fix with flexible tools such as simplified reps, data sharing, and more. The tools in Creo allow large assemblies to be created with ease and confidence in a smooth process as assemblies continue to grow.

 

3. Robust Modeling Functions

 

A robust model is defined as a model structure that can easily adapt with minimal negative feedback when changes are made to the design and model. SolidWorks is lacking in adaption for sheet metal, direct editing, multi-body designs, top-down designs, and complex surfacing. SolidWorks struggles with fluidity in progressing from conceptual models to creating robust, detailed models. Robust models need to be able to adjust with scaling. SolidWorks fails to attain that scalability as models change and evolve to create more innovative and complex products. In other words, with SolidWorks there is no assurance that your designs will reach the same efficiency as the model becomes more complex.

Contrary to SolidWorks, Creo is a single, scalable suite of integrated solutions with powerful direct and parametric modeling. As a single source of truth, Creo allows you to design without compromise, regardless of complexity, and achieve full associativity and automatic change propagation. These capabilities open up the opportunity to work on complex models without any interruptions.

4. Late-Stage Design Changes

 

There’s nothing more frustrating than getting to the end of your design iteration and realizing that you missed something along the way to finish the model. SolidWorks software makes it difficult to make late-stage design changes to complex geometry which often results in having to rework and fix the model geometry. Performance and productivity are impacted by late-design changes that require a recognition of the entire model geometry and all its features. When designers try to move parts and surfaces, these changes could require rebuilding or an import/export of CAD data. This makes it difficult to make changes to dimensions and pattern features, copy geometry, and move complex surfaces. When you can’t easily make late-stage design changes there is a disruption in the workflow – time and money are lost.

PTC Creo helps companies save money by delivering powerful capabilities for late-stage design changes. Functionalities like direct copy/paste geometry, flexible pattern tools, round editing, and the ability to follow geometry upon move are all ways that designers can keep production moving. When designers can move complex geometry and Flexible Modeling intelligently adapts geometry to the given use case, they can be confident in making late-stage design changes without disrupting their workflow. Creo saves teams from headaches, time lost, and missed opportunities.

5. Emerging Technologies

 

As far as new emerging technologies and the development of existing technologies go, SolidWorks lacks a strong initiative to keep up with the changes. While there have been proposed solutions for emerging technologies, SolidWorks focuses on extending the functionality of traditional capabilities rather than architecting a complete, and well-implemented new solution. Furthermore, their solutions are entry-level or non-existent without smooth workflows and are not fully integrated into the CAD environment. The world of technology is constantly changing and keeping up with the times is vital to bringing success to companies around the world.

PTC has unmatched capabilities in the emerging technologies that are shaping the next evolution of product development. New CAD technologies introduced by PTC are deeply integrated with Creo including generative design, simulation-driven design, augmented reality, smart connected products, and additive manufacturing. By creating compatible integrations for new, emerging technologies, PTC can stay ahead of the game with its CAD software.

From the design concept to late-stage changes, offering the best and newest capabilities is vital to the growth and success of every company. Between SolidWorks and Creo, the functionalities speak for themselves. Offering a wide expanse of tools, PTC Creo will help your designers save themselves from frustrations, shorten the design process, and increase profits year over year.

Want to learn more about how Creo could transform your business? Get in contact with our EAC experts or learn more about Creo’s capabilities here